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2D- and 3D- Potential Energy Surfaces of
B-(1—3)-Linked Disaccharides Calculated
with the MM3 Force-Field

Carlos A. Stortz* and Alberto S. Cerezo

Departamento de Quimica Orgdnica-CIHIDECAR, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

ABSTRACT

The adiabatic conformational surfaces of sixteen 4',6,6-trideoxy-B-pD-(1 — 3)-linked
disaccharides were obtained using the MM3 force-field. Calculations were carried out
on disaccharides with different configurations at C2, C4 and C2’, which are neighbors
to the glycosidic linkage, as well as that of the linked carbon (C3). The surfaces were
plotted as contour maps and as 2D graphs representing the energy vs. the \y angle. The
resulting maps were similar in each case, indicating that the substituents do not play a
major role in the conformational features of these disaccharides. However, the number
of minima, the preferred minimum conformation and the flexibility depended on the
configurations of the mentioned carbons. Vicinal equatorial substituents tend to
decrease the overall flexibility, especially those on C2, although cross over effects
were found. The relative stabilities of the minimal energy conformations of the 16
compounds were compared with those of their equivalent o-linked counterparts.
Deviations of the predicted increased stabilities of equatorially substituted compounds
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over axially substituted ones follow a relationship with their configurations, and
consequently can serve to formulate predictive trends.

Key Words: Conformational analysis; Disaccharide maps; MM3; Axial; Equatorial.

INTRODUCTION

In order to understand oligosaccharide conformational structures, the features of
the glycosidic linkages are usually represented by a Ramachandran-like conformational
map.'' 73! These disaccharide contour maps show the energy determined for all mutual
orientations of the two monosaccharide residues, expressed by the glycosidic angles ¢
and . Flexible residue analysis was initiated in 1979 and extended in the late
19805, giving rise to the first fully relaxed energy maps of disaccharides. The
parameterization of the force-field MM3!'*!'*! takes into account some problems of
carbohydrate modeling''>'® and consequently has been applied to many different di-
saccharides as demonstrated by Dowd et al.,"'’ 2% and others. Another difficulty
encountered with disaccharide modeling has its origins in the rotameric complexity of
the exocyclic substituents (the ‘‘multiple minimum problem’”)," ! which has been
circumvented using different approaches.”!’ French and coworkers®*~2* applied ab
initio or hybrid QM/MM3 procedures to map disaccharides, in an attempt to achieve
higher accuracy. The use of 2D graphs to replace contour maps as representations
of the potential energy surfaces of disaccharides was proposed as a tool to facilitate
calculations and help in drawing conclusions.'*!

Rees'?®! has predicted that disaccharides with equatorial bonds will be more
flexible than those with axial-equatorial bonds, and these in turn even more flexible
than those with axial-axial bonds. He also pointed out that bulky equatorial substituents
vicinal to the glycosidically linked atoms reduce the flexibility of the linkage more
than bulky axial substituents. Work with disaccharide analogs®? and carrageenan re-
peating units'>’ ! suggested that these assumptions were correct. However, in a recent
paper about the potential energy surfaces of o-(1 — 3)-linked disaccharides carrying
different configurations at C2, C3, C4 and C2’ we have shown that, although equatorial
bonds and vicinal axial substituents tend to increase the overall flexibility, these factors
can have a cross over effect.'*!

Herein are presented the 2D and 3D potential energy surfaces of sixteen
disaccharides of the type 3-O-(4,6-dideoxy-B-D-hexopyranosyl)-6-deoxy-B-D-hexopyr-
anose with different configurations at carbons 2, 3, 4 and 2" (Figure 1), calculated using
MM3 at &€ = 3. As in the previous paper,®”! comparison with equivalent tetrahy-
dropyran and acyclic derivatives offer an aid to learn about the factors governing the
flexibility of these molecules.

METHODS

Calculations were carried out using the molecular mechanics program MM3 (92)
(QCPE, Indiana University, USA),"*'*! at a dielectric constant of 3. The MM3
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Hj 1
N= NR
Hi R

R, R, R; R, R; Rg Ry Rg ConfNR  Conf.R
3 H OH H OH NR H H OH  Dp-xylo D-gluco
4 H OH H OH NR H OH H D-xylo D-galacto
5 H OH OH H NR H H OH  D-xylo D-manno
6 H OH OH H NR H OH H D-xylo D-talo
7 OH H H OH NR H H OH D-lyxo D-gluco
8 OH H H OH NR H OH H D-lyxo D-galacto
9 OH H OH H NR H H OH D-lyxo D-manno
10 OH H OH H NR H OH H D-lyxo D-talo
11 H OH H OH H NR H OH  D-xylo D-allo
12 H OH H OH H NR OH H D-xylo D-gulo
13 H OH OH H H NR H OH D-xylo D-altro
14 H OH OH H H NR OH H D-xylo D-ido
15 OH H H OH H NR H OH  D-lyxo D-allo
16 OH H H OH H NR OH H D-lyxo D-gulo
17 OH H OH H H NR H OH  D-lyxo D-altro
18 OH H OH H H NR OH H D-lyxo D-ido
Figure 1. The B-(1 — 3) linked disaccharides studied in this work: the non-reducing terminals

are 4,6-dideoxy-f-D-hexopyranosyl units, while the reducing terminals are 6-deoxy-o-D-hexo-

pyranose units.

routines were modified by changing the maximum atomic movement from 0.25 A to
0.10 A.B" The dihedrals ¢y and sy are defined by atoms H1’-C1-03-C3 and H3-C3-
03-C1’, respectively. Minimization was carried out by the block diagonal Newton—
Raphson procedure for grid points, using the full-matrix procedure for minima and
transition states.
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The automated procedure used to generate the minima”®! was slightly modified:
a minimum in the B region was searched for each compound. Starting from this
conformation, the 243 conformers produced by rotating the exocyclic OH groups
were generated and minimized. In some compounds no minimum in the B region
exists (Table 1), but the minimization procedure encountered a minimum in the A’
region. The unique minima (3 to 12) with lower energies (less than 1 kcal/mol
above the lowest one) were left. The full calculation (243 conformers each) was
repeated in the same manner to determine minima in the A and C regions. The
main minimum in each region was used to locate possible minima in the D-E-F
region. Starting from each of those minima, using both the dihedral drivers 2 and 4,
oy and Yy were fully varied using a 20° grid. At each point, energies were
calculated after minimization with restraints for these two angles but allowing the
other variables to relax. The optimization was terminated when the decrease in
energy converged to a value lower than 2 cal/mol. The energy for each grid point
was the lowest of any of the unique 15-40 different minima obtained previously. In
this way, only the conformation of minimal energy for each ¢,/ combination was
recorded and thus the conformational adiabatic maps, or potential energy surfaces as
function of ¢ and |y angles were produced. The same procedure, but starting from
the A, B and C minima, and restraining only the angle \y was used to construct the
2D plots.*>! In this case, 10° steps were used. It has been suggested*! to drive
torsion angles in terms of non-hydrogen atoms, given the different motions of
the three atoms during driven rotation and the inaccuracy of hydrogen atom
positions in diffraction studies. However, in order to keep up with our previous
studies'®" 3% we continued driving in terms of hydrogen atoms. For compounds in
which flipping of the chair was assumed feasible (e.g., ido configuration), special
care was taken to include in the map only conformers with the original chair
conformations (*C;). Free energies were calculated from the vibrational analysis
of the minima, with no special treatment for the low-frequency vibrations:'*?! i.e.,
the effect of frequencies equal or lower than 20 cm ' was added to the MM3
output values (which do not include those frequencies) of vibrational enthalpies
and entropies.

The absolute flexibility was calculated as described by Koca et al.l'>'®! The
formulas for calculating the absolute flexibility and partition function with respect to
both angles or just to the \ angle are described elsewhere.*>>% The percentage of
allowed surfaces was calculated as a quotient of the number of points below certain
energy and 324 (the total number of points in a 20° x 20° grid). From the contour
maps, the average energies''’ ' for each compound were calculated as:

324

ZE' . o~ Ei/RT
1
_ =

E,. =
av 324

Z o Ei/RT
i—1

where E; are the energies at each grid point, R is the gas constant, and T, the absolute
temperature (set to 298.16 K).
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RESULTS

The conformational maps of the sixteen 4',6',6-trideoxy-B-pD-(1 — 3)-linked
disaccharides shown in Figure 1 were calculated using MM3 at a dielectric constant
of 3. For comparison purposes, the same analysis was carried out with 1, the analog of
3-10 without exocyclic substituents (diequatorially linked 4-(tetrahydropyran-2-
yloxy)tetrahydropyran), and 2, the corresponding equatorially-axially linked analog
of 11-18. Data for the acyclic analog (S)-1-isopropoxyethanol (19), adapted from that
of its enantiomer®” is also included.

The resulting contour maps are shown in Figures 2 (compounds 1, 2 and 19), 3
(compounds 3-10) and 4 (compounds 11-18), while the corresponding 2D plots
appear in Figures 5 (1, 3—6 and 11-15) and 6 (2, 7-10 and 15-18). The energy
and geometry data on the minima are shown in Tables 1 (minima on the main
trough) and 2 (other minima). X-ray crystallographic studies reported the solid-state
structures for several laminarabiose derivatives™> %! with the configuration of 3, and
of a galactobiose derivative!®” with the configuration of 4. Figure 3 also shows their

Energy (kcal)

Energy (kcal)

| L 1 | L L | ... L | L L | L L 1 L L 1
-180 -120 -60 0\ 0 60 120 180
W, (©)

Figure 5. Relaxed MM3 surface (2D plot) for compounds 1-6 and 11-14.
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10 -

Energy (kcal)

Energy (kcal)

Wu(°)

Figure 6. Relaxed MM3 surface (2D plot) for compounds 7-10 and 15-18.

torsional angles. All the contour maps show similar shapes. The main trough has a
¢y angle around that predicted by the exo-anomeric effect (ca. 40°). A well within
this trough has usually two minima, called A and B (g g¥ and g, respectively)
with similar energies (Table 1). However, in some compounds a minimum called A’,
with eclipsed g replaces minimum B or appears as a third minimum in that re-
gion. Minimum A always appears, but in compounds where minimum A’ appears
instead of minimum B, minimum A is not part of the adiabatic map, which then
only shows one minimum (A’) in the main region (Figures 2—6). Minimum C (\ry 1)
is only important (less than 5 kcal/mol above the global minimum) for compounds
3-10 and 1 in which the glycosidic linkage to O3 is equatorial, or in the acyclic
compound 19. The ‘‘side of the map’’ region,*”! also complying with the exo-
anomeric effect (¢y ca. 180°) is quite more favorable than in o-linked com-
pounds.®”" Again, three more minima appear in this region for most of the com-
pounds. Their | values resemble those encountered for the A, B and C minima
(Table 2). In some compounds (7, 15 and 17), a minimum with ¢,y around —40°,
—20° (in a flat region, B’) has been found. Figures 7 and 8 show molecular

270 Madison Avenue, New York, New York 10016
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Figure 7. Molecular drawings of the minimum-energy conformers of compound 5 in the A-C
regions. Hydrogen bond arrangements are shown with dotted lines.

drawings for the minimum-energy conformations of compound 5 in each of the six
regions. Table 3 shows the major hydrogen-bond arrangements for the compounds
under study.

Flexibility calculations (conformational partition functions and absolute flexibil-
ities, considering both 2D and 3D maps, and contour map allowed surfaces) for these
compounds are shown on Table 4. Table 5 shows the relative energies of each of the
sixteen disaccharides (for the minimal conformations and average) under study, and
comparison with their a-linked counterparts.
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Figure 8. Molecular drawings of the minimum-energy conformers of compound 5 in the D-F
regions. Hydrogen bond arrangements are shown with dotted lines.
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Table 5. Relative steric (AE,,;,) and free energies (AG,;,) for the minimum energy conformer,
and average steric energies (AE,,) of each of the disaccharides under study and their o-linked
counterparts,’*” using the MM3 force-field. All energies are expressed in kcal/mol.

HO?2', B-linked a-linked
HO2,
03 HO4 AEin AE,, AGin AEin AE,, AGin

3 E* EEE 0.00 0.00 0.00 1.12 1.47 1.89
4 E EEA 0.89 1.17 1.43 1.90 2.04 2.22
5 E EAE 1.22 1.36 1.19 2.97 2.98 3.36
6 E EAA 2.02 2.18 2.87 2.82 3.00 3.87
7 E AEE 1.61 1.65 2.03 1.75 2.02 2.63
8 E AEA 2.58 2.88 3.26 2.87 3.00 3.39
9 E AAE 3.25 3.27 3.47 3.54 3.66 4.04
10 E AAA 3.48 3.77 4.95 3.77 3.93 4.64
11 A EEE 3.55 3.73 3.31 3.99 4.08 4.78
12 A EEA 4.21 4.30 4.06 4.71 4.63 4.66
13 A EAE 3.70 3.73 3.43 4.12 4.28 4.51
14 A EAA 2.75 2.88 3.27 3.36 3.57 4.24
15 A AEE 5.34 5.52 5.35 5.12 5.13 5.69
16 A AEA 5.71 5.86 5.87 5.58 5.57 5.90
17 A AAE 5.25 5.45 5.77 4.74 4.94 5.20
18 A AAA 441 4.52 5.27 4.13 435 5.09

?A = axial substituent, E = equatorial substituent.

DISCUSSION

The potential energy surfaces of many disaccharides were analyzed with the MM3
force-field.!'” 21 A systematic work has been carried out for o-(1 — 3)-linked disac-
charides composed of two D-hexose residues, in an attempt to correlate the potential
surfaces with the configurations of the carbons bearing hydroxyl groups vicinal to the
glycosidic linkage, as well as that of the glycosidic linkage itself.”*! In that work, to
facilitate the calculations, and to achieve a more reliable adiabaticity of the map,
hydroxyl groups located far from the glycosidic linkage have been eliminated. In this
work, a similar approach was carried out with B-(1 —3) linked disaccharides. As
shown previously, the general conclusions may also be extended to the fully hydro-
xylated disaccharides."*”!

Shape of the Potential Surfaces

The contour maps show the typical features of those of P-linked disac-
charides.!"”2%4%) The analogs 1 and 2 (Figure 2) show a main trough, centered at a
more or less fixed ¢y angle (between 0° and 60°), containing the three main minima,
each of which exhibits a clearly different \yy angle. A second trough appears at the
other ¢ angle favored by the exo-anomeric effect (dy ca. 180°, ‘‘side-of the-map’’
minima[40]), and also encompasses three minima, each with s values similar to those in
the main trough. This region has very high energies in disaccharides with axial
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glycosidic linkage,'*2~2*3%4%1 and is ‘‘connected’’ to the main trough by a crossing
channel around Vg 0°, with barriers between the troughs around 8 kcal/mol (negative
¢p) and 10 kcal/mol (positive ¢y). Surprisingly, the same shape of the map and
geometrical features of the minima (Table 1, Figure 2) was observed for the simple
acyclic hemiacetal 19, indicating that the main conformational features of the map are
dictated by the C—O—C bond, and less by the substituents. The configuration of C3
defines the depth of the C region: this minimum is attainable for equatorial linkages on
C3, but carries high energies when this linkage is axial. This is clearly observed in the
contour maps (cf 1 and 2, Figure 2). However, human perception allows recognizing
this fact even better in the 2D plots'®! (Figure 5). The introduction of hydroxyl and
methyl groups on the tetrahydropyran derivatives does not change the main features of
the maps: the contour maps for 3—10 are very similar to that of 1, while those for 11—
18 are like that of 2 (Figures 2-6). For some compounds (7, 15 and 17), another
minimum (B’, Table 2) in a plateau region appears. An equivalent minimum, called
“non-exo-anomeric",[40] was also detected sometimes for a-linked compounds (on the
upper-right side of the maps),°! and reported to be non-systematic."® In the present
work, this minimum appears only in compounds with axial O2" and equatorial O4. Its
presence may be related to the possibility of engaging in a hydrogen bond (Table 3). In
the main trough, usually two main minima (A and B) appear, with very close relative
energies. Those with the reducing moiety with D-manno, D-gulo or D-ido configuration
have A as the main minimum, as occurs with the non-substituted analogs 1 and 2 (and
the acyclic 19), whereas those carrying a reducing moiety with D-galacto, D-talo or D-
altro configuration show B as the main minimum. On the other hand, those compounds
with both O2 and O4 equatorial (D-gluco and D-allo configurations) exhibit a global
minimum in a region intermediate between A and B (A’, iy ca. 0°, Table 1, see
Figures 5 and 6). Furthermore, in three of these compounds (3, 7 and 11), the minimum
B does not exist, while the A minimum appears, but with an energy above that of the
adiabatic map. This fact confers to these contour maps (Figures 3 and 4) and 2D plots
(Figures 5 and 6) a differentiated shape, with only one minimum in the main region.
Minimum A’ also appears in compounds having the reducing moiety with D-gulo
configuration, giving a three-minimum well. However, in these compounds (12 and 16),
the B minima carry higher energies (Table 1). The effects of the substituents on the
relative energies of the main minima are interrelated, but exhibit sharp correlations with
their orientations, even more comprehensible than for o-linked compounds:*” the
concurrence of equatorial O2 and O4 (irregardless of the orientation of O3) favors
minimum A’. For the remaining twelve compounds, a combination of O3 and O4 either
axial or equatorial favors minimum A, while combinations with different configurations
at O3 and O4 lead to B as the global minimum. Consequently, with the exception of
compounds with equatorial HO2 and HO4, the configurations of HO2 and HO2' are not
important for defining the relative energies of the main minima. These effects can
neither be explained at all on grounds of hydrogen-bonding, (as all the minima are
similarly stabilized in most compounds, Table 3) nor by the measurement of H1'-H2
distances, which are related to the configurations of O2 and O3, but not on that of O4,
which was found to be crucial to the determination of the global minimum. The crystal
structures reported*>~**! for compounds with the configuration of 3 (D-gluco) with
acetylated hydroxyl groups have their glycosidic torsion angles in the A’ region, in
agreement with the results of this work. The same fact occurs on an acetylated
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analog!®! of 4, which, in agreement with the present calculation, shows a geometry
within the B region (Figure 3). On the other hand, analogs of 3 with free hydroxyl
groups®>3®! have a crystal structure in the B region, which fails to appear in the
present calculation.

The relative energies of the minima in the ‘‘side of the map’’ region (dy ca. 180°)
are variable (1-6 kcal/mol, Table 2). In compounds with axial O3, minimum D carries
less energy than minimum E in most cases, though their energies are levelled for
compounds with axial O2 and O4 (14 and 18) or without substituents (2). On the other
hand, in compounds with equatorial O3, minimum E appears stabilized in compounds
with axial O2 (5, 6, 9 and 10), and levelled with D or unfavored for the remaining
compounds (1, 3, 4, 7 and 8). The D-E area is relatively favored in compounds 11 and
12 (with respect to the A—B region), with an axial O3 and equatorial O2" and O2,
while it appears unfavored in compounds 7, 8, 10, 17 and 18. Only the cases of 10 and
18 may be explained on grounds of hydrogen bonding.

It is worthy of note that, in the same way that the map of 19 is identical to that of its
enantiomer*! after a 180° rotation, the maps of the B-linked disaccharides (Figures 2
Figures 3 Figures 4) have a similar relationship with equivalent o-linked disacchar-
ides, with the main trough shifted from ¢ ~ 40° in B-linked compounds to &~ — 40°
in o-linked compounds, and the non exo-anomeric minima with both ¢y and iy g~ in
B-linked compounds and g* in o-linked compounds. As occurred with o-linked
compounds,*®! the presence or absence of bulky substituents does not have a major
effect on the general shape of the maps and/or the flexibilities. The acyclic model like 19
gives a map and a flexibility with similar characteristics to those of 1-18. This fact
emphasizes again the prime role of the torsional energies in determining energy surfaces,
and the small variations produced by the presence and configuration of the substituents.

Free Energy Calculations

Conformational entropy does not need to be uniformly distributed:!?*3%3! jt
should be expected that strongly hydrogen-bonded conformers will have a reduced
mobility, with an unfavorable entropic contribution, thus leading to relatively higher
free energies.””**” Table 1 shows that considering free energies, the energies of the
A’ and/or B minima appear increased relative to those of the A minima in all cases.
This agrees with the calculated hydrogen-bond arrangements, usually not occurring
in the A minima, and more likely to occur in minima A’ and B (Table 3). Free-
energy calculations also tend to give higher values of relative energies for the
remaining minima (C, D, E and F), possibly by an entropic effect (their wells are
less deep, Figures 2—4). However, in some cases this effect is negligible (Tables 1
and 2).

Flexibilities

Different ways of measuring the flexibility of the glycosidic linkage have been
devised.®° The partition function or probability volume!**=2*27=3% jg highly
dependent on the size of the regions of the map with very low energy and thus,
highly influenced by the entropy of the global minimum. The absolute flexibil-
ityt!>163% gives an indication of the conformational interconversions of the lower-
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energy minima, and is very sensitive to the height of the lower potential barriers.
Another parameter, used earlier as a semiquantitative measurement in rigid residue
analysis,"*!! can be defined in terms of “‘allowable surfaces’’, offering the notion of the
percentage of the surface with an energy below a certain value. It is also related with
the entropy of the global minimum, but in a more linear fashion than the partition
function. Table 4 shows the results of calculating these parameters for the compounds
under study. The partition function and absolute flexibilities were also calculated for
the 2D plot: the predicted correlation between both values seems to hold,””! as shown
by the more or less constant values of both ratios (Table 4). This is expected
considering the high energies of minima carrying a ¢ angle sharply different from that
of the global minimum.

The prediction that equatorially linked disaccharides are more flexible than those
that carry at least an axial bond®® was shown to be true in several cases.?~2427-30]
Comparison of the compounds under study with their equivalent o-linked counter-
parts®” (which carried one more axial linkage) also follows this trend. The allowed
surfaces of the B-linked compounds to 10 kcal/mol are larger for the 18 compounds
under study, and so occurs with most of those considered to 5 kcal/mol. The partition
functions, absolute flexibilities and allowed surfaces to 2 kcal/mol of o-linked
compounds were larger only for the equivalents of 5, 10, 12 and 16 (Table 4). Besides,
increased partition functions were encountered for the a-linked equivalents of 8 and 15,
and increased absolute flexibilities for the equivalents of 3, 11 and 15. The absolute
flexibilities of the last three compounds are very low, given the fact that no transition
states are found within the main well (Table 4). Within the B-linked compounds under
study in the present work, the inspection of allowable surfaces to 10 kcal/mol indicate
clearly that diequatorially linked compounds (or acyclic 19) are more flexible, as
expected considering the contribution of the C region. Within each group, the presence
of diaxial substituents on O2 and O4 increase the flexibility. The allowable surfaces to
5 kcal/mol are highest for the acyclic 19, and very similar for compounds 3-18,
independently from their configurations. Slightly higher values were encountered for
the unsubstituted tetrahydropyran derivatives 1 and 2. The allowable surfaces to 2
kcal/mol are very similar for the 19 compounds under study (4.9-6.8%), indicating
only a minor configurational effect of the hydroxyl groups on this parameter. It was
also predicted that bulky equatorial substituents vicinal to the linkage are also
decreasing the flexibility.”®*°! The analysis of Table 4 indicates that HO2 has such
effect in most cases: the partition functions of compounds with axial HO2 are higher
or similar to those with equatorial HO2, with the exception of the pair 3—-5. The
absolute flexibilities follow a similar trend, though an inverse effect was found when
passing from compounds with D-galacto to those with D-falo configuration. The effect
of HO4 is more difficult to rationalize: the partition functions of compounds with an
axial HO4 have actually lower or similar values than those with an equatorial HO4,
with the exception of the pair 17-18 (and the pair 11-12 when looking at the 2D
partition function). On the other hand, the absolute flexibilities follow a more logical
trend: an axial HO4 decreases the flexibility when HO?2 is axial, whereas increases it
when HO2 is equatorial. In other words, there is an increased flexibility (at least, as
measured by the absolute flexibility parameter) when HO2 and HO4 carry an inverse
configuration. Compounds with diaxial or diequatorial HO2-HO4 have the lower
absolute flexibilities (with the exception of 18). At last, the effect of the configuration
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of HO2' is even less noticeable. Most of the compounds show a small effect, not very
systematic. The larger effects are found for compounds with D-manno configuration,
in which an axial HO2' increases the flexibility (measured by both q and ®), and
those with D-falo and D-altro configuration, where that configuration has an opposite
effect (Table 4).

Relative Stabilities of Compounds 3-18
and Their a-Linked Counterparts

The relative steric energies of the global minimum and average energies of each
compound were compared with those of their a-linked counterparts (Table 5). No major
differences were found by using global minimum or average energies. As expected,
compound 3, with all equatorial substituents is the most stable. In most cases, -linked
compounds are more stable than their equivalent a-linked counterparts, but two factors
act against this trend: the configurations of 02" and O3. As expected, an axial O2’
increases the magnitude of the anomeric effect, thus augmenting the stability of the «-
linked compounds. An axial O3 has a similar contribution, although of less magnitude.
Thus, the highest Eg—E, is found for compounds 3-6 (0.8—1.7 kcal/mol) with both 02’
and O3 equatorial. Intermediate values (0.1-0.7 kcal/mol) are observed for 7-14,
where one substituent is axial and the other equatorial. Finally, compounds with axial
02" and O3 exhibit an a-anomer more stable than the P-anomer (0.1-0.5 kcal/mol).
The same trend was observed when looking at free energies: in most compounds Gg—
G, is similar to Eg—E,. However, compounds with equatorial O4 (with the exception of
9 and 17, where both O2" and O2 are axial) have an increased Gg—G,, and 10 (axial
02 and O4) has a reduced difference.

Equatorial orientation of the hydroxyl group in cyclohexanol is favored by about
0.8 kcal/mol. As occurred for the o-linked disaccharides,®® a similar difference is
observed here (Table 5) between compounds with axial and equatorial HO4, if HO2
is also equatorial. If HO2 is axial, an axial HO4 appeared slightly favored in o-linked
disaccharides.®” Herein, with the exception of 6 (with an abnormally high energy),
the same trend is observed. This is due to a strong intramolecular hydrogen-bond
arrangement between the two axial groups in a 1,3-diaxial array. As expected, when
observing free energies, the stabilizing effect of this diaxial array is reduced. For
a-linked disaccharides, a ca. 0.8 kcal/mol effect of an axial HO2' was encountered.*”!
For B-linked disaccharides, an axial HO2" has a much larger effect (ca. 1.6 kcal/
mol), given its incidence on the anomeric effect. As occurred with o-linked
disaccharides,® the effect of the configuration of HO2 depends on other factors: it
is favorable to the equatorial position (0.9-1.6 kcal/mol) when O3 is also equatorial,
negligible when O3 is axial and HO4 equatorial, and clearly favorable to the axial
conformer (1.3-1.5 kcal/mol) when O3 and HO4 are axial (due to hydrogen-
bonding, see above). The axial linkage on C3 always represents a large penalty, with
a trend similar to that observed for a-linked compounds.”® Equatorial HO2 and
HO4 increase the magnitude of this penalty: 3.6 kcal/mol when both are equatorial,
ca.l kcal/mol when both are axial and intermediate values for the remaining cases
(ca. 3 kcal/mol for equatorial HO2/axial HO4, ca.2 kcal/mol for equatorial HO4/
axial HO2).
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Stereochemical Consequences

3C NMR glycosylation effects in disaccharides have been justified on the basis
of spatial interaction of protons in different monosaccharide moieties.>*#*~44
Shashkov et al.*¥ have related the different stereochemical factors (configuration of
the linkage, monosaccharides, and of the carbons neighboring the linkage, chair
conformation, etc.), and the experimental '*C NMR glycosylation shifts. Therefore,
they established the presence of two groups of disaccharides: one with a large
glycosylation shift on both linked carbons, but a negligible shift on the neighboring
carbons (group EII), and a second group (EI) with a smaller glycosylation shift on
the linked carbons, but a substantial B-effect (ca. 3 ppm) on one of the carbons of
the reducing terminus. In the present work, we have calculated the Boltzmann-
averaged inter-proton distances calculated for each of the 16 disaccharides under
study. The distance H1’-H3 can have two different ranges of values: 1) short (2.25—
2.37 10\) for compounds with equatorial O3 and equatorial HO2 (3, 4, 7 and 8), or
those with an axial O3 and an equatorial HO4 (13, 15 and 17). 11 is an exception
due to the high population of the D conformer. According to the previous rules,'*’!
those compounds should be gathered within group EII, with large glycosylation
effects on C1’ and C3; and 2) medium (2.42-2.47 1&) for the remaining compounds,
included in group EI, giving rise to smaller glycosylation effects on C1’ and C3.1*
As expected from an empirical relationship,’** short inter-proton distances should
give rise to larger glycosylation effects. In addition, the analysis of the distances of
H1’ with the protons on the neighboring carbons (H2 and H4) led to the conclusion
that these distances should be shorter (2.7-3.7 A) when their corresponding hydroxyl
group is axial than when it is equatorial (4.0-4.7 A). The glycosylation effects on
C1’ and C3 according to the groups EI and EII are thus probably correct in the
interpretation of Shashkov et al.”**! The configuration of HO2' is irrelevant as to the
glycosylation effect or distance,****! due to the strong preference for the compounds
to have the ¢ angle predicted by the exo-anomeric effect, which shifts the
‘‘aglycone’” apart from C2'.
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